High-extinction ruthenium compounds for sunlight harvesting and hole transport.

نویسندگان

  • Aaron Staniszewski
  • William B Heuer
  • Gerald J Meyer
چکیده

The compounds Ru(bpy) 2(BTL)(PF 6) 2 and Ru(deeb) 2(BTL)(PF 6) 2, where bpy is 2,2'-bipyridine, deeb is 4,4'-(C 2H 5CO 2) 2-bpy, and BTL is 9'-[4,5-bis(cyanoethylthio)]-1,3-dithiol-2-ylidene]-4',5'-diazafluorene, were found to have very high extinction coefficients in the visible region. In an acetonitrile solution, the extinction of Ru(deeb) 2(BTL)(PF 6) 2 was = 44 000 +/- 1000 M (-1) cm (-1) at lambda = 470 nm. Two quasi-reversible oxidation waves, E 1/2 = +0.88 and +1.16 V, and an irreversible reduction, E pr = -1.6 V, were observed versus ferrocene (Fc (+/0)). At -40 degrees C, a state was observed with spectroscopic properties characteristic of a metal-to-ligand charge-transfer excited state, tau = 25 ns. This same compound was found to photoinject electrons into TiO 2 with a quantum yield Phi = 0.3 +/- 0.2 for 532.5 or 417 nm light excitation in a 0.1 M LiClO 4/acetonitrile electrolyte. In regenerative solar cells, a sustained photocurrent was observed with a maximum incident photon-to-current efficiency of 0.4. The photocurrent action and absorptance spectra were in good agreement, consistent with injection from a single excited state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells.

Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and ...

متن کامل

A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells.

We demonstrate for the first time an asymmetric squaraine-based low band-gap hole transporting material, which acted as both light harvesting and hole transporting layers in methylammonium lead triiodide perovskite solar cells. Opto-electrochemical characterization revealed extremely high molar extinction coefficients of the absorption bands in the low energy region and prominent space charge d...

متن کامل

A New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells

Dye-sensitized solar cells (DSCs) have been explored for more than a decade for realistic photovoltaic applications owing to their high conversion efficiency and low cost. Molecular engineering of the sensitizers to achieve high photovoltaic performance and long-term device stability is one of the critical strategies. Since the first high-efficiency ruthenium-based sensitizer, cis-di(thiocyanat...

متن کامل

Zn-porphyrin-sensitized nanocrystalline TiO2 heterojunction photovoltaic cells.

During the last 10 years, with the development of nanocrystalline films of very high surface area, the photosensitization of wide-bandgap semiconductors, such as TiO2, by adsorbed dyes has become more realistic for solar-cell applications. In a porous film consisting of nanometer-sized TiO2 particles, the effective surface area can be enhanced 1000-fold, thus making light absorption efficient e...

متن کامل

Synthesis and Characterization of a Heteroleptic Ru(II) Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties

In an effort to develop new ruthenium(II) complexes, this work describes the design, synthesis and characterization of a ruthenium(II) functionalized phenanthroline complex with extended π-conjugation. The ligand were L(1) (4,7-bis(2,3-dimethylacrylic acid)-1,10-phenanthroline), synthesized by a direct aromatic substitution reaction, and L(2) (4,7-bis(trianthracenyl-2,3-dimethylacrylic acid)-1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 47 16  شماره 

صفحات  -

تاریخ انتشار 2008